Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N,N'-[(1,7-Dioxa-4,10-diazacyclododecane-2,10-diyl)diethylene]diphthalimide

Xin Sheng, Dong-Hua Wu, Zhao-Li Jia, Ying Shao and Guo-Yuan Lu*

Department of Chemistry, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, People's Republic of China Correspondence e-mail: lugyuan@nju.edu.cn

Received 20 July 2007; accepted 23 July 2007

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.105; data-to-parameter ratio = 14.5.

The title compound, $C_{28}H_{32}N_4O_6$, crystallizes with one halfmolecule in the asymmetric unit and the other half generated by an inversion centre. The compound has a crown structure and is an important intermediate for the synthesis of biologically active 1,7-dioxa-4,10-diazacyclododecane derivatives. Intermolecular π - π stacking interactions, with a perpendicular distance of 3.57 Å, involving the planar phthalimide groups and weak C-H···O hydrogen bonds are present.

Related literature

For related literature, see: Aoki & Kimura (2004); Chin & Morrow (1994); Kassai *et al.* (2004); Sheng, Lu, Chen *et al.* (2007); Sheng, Lu, Zhang *et al.* (2007).

Experimental

Crystal data

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2000) $T_{min} = 0.97, T_{max} = 0.98$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.051$	172 parameters
$wR(F^2) = 0.106$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.14 \text{ e } \text{\AA}^{-3}$
2494 reflections	$\Delta \rho_{\rm min} = -0.14 \text{ e } \text{\AA}^{-3}$

6537 measured reflections

 $R_{\rm int} = 0.038$

2494 independent reflections

1517 reflections with $I > 2\sigma(I)$

Table 1

D-

C4-

C9-

Hydrogen-bond geometry (Å, °).

-H···A	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H4\cdots O2^{i}$ $-H9B\cdots O2$	0.93	2.50	3.244 (5)	137
	0.97	2.47	2.874 (4)	105

Symmetry code: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 2000); cell refinement: *SAINT* (Bruker, 2000); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Bruker, 2000); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This work was supported by the National Natural Science Foundation of China (grant No. 20372032).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2349).

References

- Aoki, S. & Kimura, E. (2004). Chem. Rev. 104, 769-787.
- Bruker (2000). SMART (Version 5.0), SAINT (Version 6.22), SHELXTL (Version 6.1) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chin, K. O. A. & Morrow, J. R. (1994). Inorg. Chem. 33, 5036-5041.
- Kassai, M., Ravi, R. G., Shealy, S. J. & Grant, K. B. (2004). Inorg. Chem. 43, 6130–6132.
- Sheng, X., Lu, X.-M., Chen, Y.-T., Lu, G.-Y., Zhang, J.-J., Shao, Y., Liu, F. & Xu, Q. (2007). *Chem. Eur. J.* In the press.
- Sheng, X., Lu, X.-M., Zhang, J.-J., Chen, Y.-T., Lu, G.-Y., Shao, Y., Liu, F. & Xu, Q. (2007). J. Org. Chem. 72, 1799–1802.

supplementary materials

Acta Cryst. (2007). E63, o3614 [doi:10.1107/S1600536807035805]

N,N'-[(1,7-Dioxa-4,10-diazacyclododecane-2,10-diyl)diethylene]diphthalimide

X. Sheng, D.-H. Wu, Z.-L. Jia, Y. Shao and G.-Y. Lu

Comment

Artificial nucleases have attracted extensive attention due to their potential applications in the fields of molecular biological technology and drug development (Aoki & Kimura, 2004; Chin & Morrow, 1994). The derivatives of aza-crown ethers, such as 1,7-dioxa-4,10-diazacyclododecane and 1,4,7-triazacyclononane exhibit excellent ability to cleave nucleic acids (Sheng, Lu, Chen *et al.*, 2007; Sheng, Lu, Zhang *et al.*, 2007), phosphodiesters, dipeptides and proteins (Kassai *et al.*, 2004). The title compound, (I), is an important intermediate for the synthesis of artificial nucleases 1,7-dioxa-4,10-diazacyclododecane derivatives containing diaminoethyl double side arms, and (I) itself might be a DNA intercalation reagent.

The title molecule (I) is symmetric with an inversion centre imposed at the mid-point of the 1,7-dioxa-4,10-diazacyclododecane ring [symmetry code: (a) 1 - x, 1 - y, -z], (Fig. 1). In the title molecule (I), (Fig. 2), the intermolecular $\pi - \pi$ stacking interaction of the planar phthalimide groups and weak intermolecular C—H…O hydrogen bonds effectively stabilize the crystal structure.

Experimental

The title compound (I) was synthesized according to the literature procedure (Sheng, Lu, Chen *et al.*, 2007; Sheng, Lu, Zhang *et al.*, 2007). A stirred solution of 1,7-dioxa-4,10-diazacyclododecane (0.26 g, 0.0015 mol), *N*-(2-bromoethyl)phthalimide (0.80 g, 0.0031 mol), and anhydrous potassium carbonate (0.50 g) in dry CHCl₃ (25 ml) was heated at 348 K for 12 h. The mixture was then allowed to cool to room temperature and filtered. The filtrate was concentrated under reduced pressure to give a brown oil and purified by silica gel chromatographic column (chloroform/methanol, 2/1 then 1/2) to obtain the title compound (I) as a colourless solid (0.68 mg, 0.0013 mol, yield: 87%, m.p. 481–482 K). Colourless single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution at room temperature.¹H NMR (CDCl₃): δ (p.p.m) 2.58 (t, 8H, 4NCH₂), 2.73 (t, 4H, 2NCH₂), 3.44 (t, 8H, 4OCH₂), 3.72 (t, 4H, 2CONCH₂), 7.68–7.72 (m, 4H, 2ArH), 7.80–7.84 (m, 4H, 2ArH). ¹³C NMR (CDCl₃): δ (p.p.m) 36.18 (NCH₂), 53.82 (NCH₂), 55.33 (NCH₂), 69.65 (OCH₂), 123.50 (Ar C), 132.6 (Ar C), 134.24 (Ar C), 168.79 (C=O). ESI-MS m/z [*M*+H]⁺ calcd. 525.2, found 525.3.

Refinement

H atoms were located geometrically and allowed to ride on their parent atoms with C—H distances of 0.93–0.97 Å and $U_{iso}=1.2U_{eq}$ of the parent atoms.

Figures

Fig. 1. View of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are omitted for clarity.

Fig. 2. The molecular packing of (I) viewed along the b axis.

N, N' - [(1, 7- Dioxa - 4, 10- diazacyclododecane - 2, 10- diyl) diethylene] diphthalimide

$F_{000} = 552$
$D_{\rm x} = 1.356 {\rm ~Mg~m}^{-3}$
Melting point: 481-482 K
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 778 reflections
$\theta = 2.9 - 27.8^{\circ}$
$\mu = 0.10 \text{ mm}^{-1}$
T = 293 (2) K
Block, colourless
$0.32 \times 0.26 \times 0.24 \text{ mm}$

Data collection

Bruker SMART APEX CCD area-detector diffractometer	2494 independent reflections
Radiation source: sealed tube	1517 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.038$
T = 293(2) K	$\theta_{\text{max}} = 26.0^{\circ}$
φ and ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -12 \rightarrow 13$
$T_{\min} = 0.97, \ T_{\max} = 0.98$	$k = -11 \rightarrow 7$
6537 measured reflections	$l = -16 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.106$	$w = 1/[\sigma^2(F_o^2) + (0.04P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
2494 reflections	$\Delta \rho_{max} = 0.14 \text{ e } \text{\AA}^{-3}$
172 parameters	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.81133 (17)	0.6171 (2)	-0.02553 (16)	0.0498 (5)
C2	0.82852 (16)	0.4587 (2)	-0.04563 (16)	0.0461 (5)
C3	0.8035 (2)	0.3817 (3)	-0.13666 (17)	0.0634 (7)
H3	0.7731	0.4304	-0.2003	0.076*
C4	0.8245 (2)	0.2308 (3)	-0.1318 (2)	0.0750 (8)
H4	0.8078	0.1767	-0.1929	0.090*
C5	0.8703 (2)	0.1582 (3)	-0.0370 (2)	0.0708 (7)
Н5	0.8822	0.0556	-0.0355	0.085*
C6	0.89907 (18)	0.2366 (2)	0.05674 (18)	0.0556 (6)
Н6	0.9327	0.1889	0.1205	0.067*
C7	0.87551 (15)	0.3861 (2)	0.04999 (15)	0.0417 (5)
C8	0.88977 (15)	0.4992 (2)	0.13198 (16)	0.0418 (5)
C9	0.82979 (18)	0.7656 (2)	0.13443 (18)	0.0568 (6)
H9A	0.8859	0.8432	0.1248	0.068*
H9B	0.8560	0.7442	0.2081	0.068*
C10	0.69116 (18)	0.8226 (2)	0.09738 (17)	0.0518 (6)
H10A	0.6815	0.8929	0.1481	0.062*
H10B	0.6754	0.8759	0.0326	0.062*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C11	0.5977 (2)	0.6286 (2)	0.17576 (16)	0.0502 (5)
H11A	0.5523	0.6869	0.2121	0.060*
H11B	0.6867	0.6185	0.2210	0.060*
C12	0.5374 (2)	0.4770 (2)	0.15272 (18)	0.0537 (6)
H12A	0.5228	0.4371	0.2137	0.064*
H12B	0.4551	0.4829	0.0968	0.064*
C13	0.5746 (2)	0.2413 (2)	0.08825 (17)	0.0521 (5)
H13A	0.5014	0.2201	0.1102	0.063*
H13B	0.6407	0.1675	0.1194	0.063*
C14	0.53382 (18)	0.2294 (2)	-0.02717 (17)	0.0480 (5)
H14A	0.5970	0.2798	-0.0505	0.058*
H14B	0.5331	0.1253	-0.0460	0.058*
N1	0.59403 (14)	0.70666 (16)	0.08141 (12)	0.0379 (4)
N2	0.84659 (13)	0.63336 (18)	0.08047 (13)	0.0448 (4)
O1	0.77458 (15)	0.71729 (19)	-0.08768 (13)	0.0729 (5)
O2	0.93177 (13)	0.48408 (17)	0.22508 (11)	0.0560 (4)
O3	0.62317 (12)	0.38433 (15)	0.12362 (12)	0.0519 (4)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0270 (9)	0.0660 (15)	0.0500 (12)	-0.0038 (9)	0.0045 (8)	0.0156 (11)
C2	0.0245 (8)	0.0677 (14)	0.0449 (12)	0.0007 (9)	0.0101 (7)	0.0073 (10)
C3	0.0420 (12)	0.103 (2)	0.0427 (14)	0.0035 (12)	0.0111 (10)	-0.0027 (13)
C4	0.0454 (13)	0.111 (2)	0.0666 (18)	0.0093 (14)	0.0164 (12)	-0.0300 (16)
C5	0.0402 (12)	0.0697 (16)	0.097 (2)	0.0149 (11)	0.0160 (12)	-0.0222 (15)
C6	0.0365 (11)	0.0597 (15)	0.0636 (15)	0.0130 (9)	0.0077 (10)	0.0019 (11)
C7	0.0229 (8)	0.0530 (12)	0.0459 (12)	0.0027 (8)	0.0075 (7)	0.0031 (9)
C8	0.0247 (9)	0.0514 (12)	0.0434 (12)	-0.0034 (8)	0.0038 (8)	0.0068 (9)
C9	0.0347 (10)	0.0470 (12)	0.0717 (16)	-0.0077 (9)	-0.0043 (10)	-0.0061 (11)
C10	0.0445 (10)	0.0342 (11)	0.0661 (15)	-0.0044 (9)	0.0047 (10)	-0.0070 (9)
C11	0.0548 (12)	0.0544 (12)	0.0392 (12)	0.0031 (10)	0.0128 (9)	-0.0081 (9)
C12	0.0537 (12)	0.0525 (13)	0.0614 (15)	0.0063 (10)	0.0280 (10)	0.0123 (11)
C13	0.0474 (12)	0.0410 (12)	0.0539 (12)	-0.0009 (9)	-0.0013 (9)	0.0086 (9)
C14	0.0378 (10)	0.0407 (11)	0.0597 (13)	0.0065 (8)	0.0087 (9)	-0.0017 (9)
N1	0.0335 (7)	0.0322 (8)	0.0414 (9)	0.0012 (6)	0.0038 (6)	-0.0020 (7)
N2	0.0294 (7)	0.0478 (10)	0.0484 (10)	-0.0025 (7)	0.0014 (7)	0.0052 (8)
O1	0.0615 (10)	0.0836 (12)	0.0632 (10)	0.0006 (9)	0.0074 (8)	0.0369 (9)
O2	0.0483 (8)	0.0700 (10)	0.0383 (9)	0.0018 (7)	-0.0002 (6)	0.0065 (7)
O3	0.0364 (7)	0.0480 (8)	0.0637 (10)	-0.0032 (6)	0.0073 (6)	-0.0101 (7)

Geometric parameters (Å, °)

C1—01	1.211 (3)	С9—Н9В	0.9700
C1—N2	1.377 (3)	C10—N1	1.456 (3)
C1—C2	1.474 (3)	C10—H10A	0.9700
C2—C3	1.369 (3)	C10—H10B	0.9700
C2—C7	1.396 (3)	C11—N1	1.458 (3)
C3—C4	1.373 (4)	C11—C12	1.502 (3)

С3—Н3	0.9300	C11—H11A	0.9700
C4—C5	1.386 (4)	C11—H11B	0.9700
C4—H4	0.9300	C12—O3	1.414 (3)
C5—C6	1.403 (3)	C12—H12A	0.9700
С5—Н5	0.9300	C12—H12B	0.9700
C6—C7	1.366 (3)	C13—O3	1.414 (3)
С6—Н6	0.9300	C13—C14	1.493 (3)
С7—С8	1.483 (3)	C13—H13A	0.9700
C8—O2	1.207 (3)	С13—Н13В	0.9700
C8—N2	1.396 (3)	C14—N1 ⁱ	1.469 (3)
C9—N2	1.443 (3)	C14—H14A	0.9700
C9—C10	1.526 (3)	C14—H14B	0.9700
С9—Н9А	0.9700	N1	1.469 (3)
O1—C1—N2	124.7 (2)	С9—С10—Н10В	108.7
O1—C1—C2	128.4 (2)	H10A—C10—H10B	107.6
N2—C1—C2	106.92 (17)	N1-C11-C12	111.88 (18)
C3—C2—C7	120.9 (2)	N1—C11—H11A	109.2
C3—C2—C1	131.2 (2)	C12—C11—H11A	109.2
C7—C2—C1	107.86 (19)	N1—C11—H11B	109.2
C2—C3—C4	118.5 (2)	C12—C11—H11B	109.2
С2—С3—Н3	120.8	H11A—C11—H11B	107.9
С4—С3—Н3	120.8	O3—C12—C11	107.63 (18)
C3—C4—C5	120.8 (2)	O3—C12—H12A	110.2
С3—С4—Н4	119.6	C11—C12—H12A	110.2
С5—С4—Н4	119.6	O3—C12—H12B	110.2
C4—C5—C6	121.2 (3)	C11—C12—H12B	110.2
С4—С5—Н5	119.4	H12A—C12—H12B	108.5
С6—С5—Н5	119.4	O3—C13—C14	111.77 (17)
C7—C6—C5	116.9 (2)	O3—C13—H13A	109.3
С7—С6—Н6	121.5	C14—C13—H13A	109.3
С5—С6—Н6	121.5	O3—C13—H13B	109.3
C6—C7—C2	121.7 (2)	C14—C13—H13B	109.3
C6—C7—C8	130.9 (2)	H13A—C13—H13B	107.9
C2—C7—C8	107.45 (19)	N1 ⁱ —C14—C13	113.66 (17)
O2—C8—N2	125.02 (19)	N1 ⁱ —C14—H14A	108.8
O2—C8—C7	128.8 (2)	C13—C14—H14A	108.8
N2	106.20 (19)	N1 ⁱ —C14—H14B	108.8
N2—C9—C10	113.16 (16)	C13—C14—H14B	108.8
N2—C9—H9A	108.9	H14A—C14—H14B	107.7
С10—С9—Н9А	108.9	C10—N1—C11	114.34 (16)
N2—C9—H9B	108.9	C10—N1—C14 ⁱ	109.05 (16)
С10—С9—Н9В	108.9	C11—N1—C14 ⁱ	111.77 (16)
Н9А—С9—Н9В	107.8	C1—N2—C8	111.53 (17)
N1—C10—C9	114.29 (18)	C1—N2—C9	125.97 (18)
N1-C10-H10A	108.7	C8—N2—C9	122.20 (19)
C9—C10—H10A	108.7	C13—O3—C12	114.87 (17)
N1-C10-H10B	108.7		

Symmetry codes: (i) -x+1, -y+1, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C4—H4···O2 ⁱⁱ	0.93	2.50	3.244 (5)	137
С9—Н9В…О2	0.97	2.47	2.874 (4)	105
Symmetry codes: (ii) $x, -y+1/2, z-1/2$.				

Fig. 2

